M346 Final Exam, December 11, 2004

1. On $\mathbb{R}_{3}[t]$, let L be the linear operator that shifts a function to the left by one. That is $(L \mathbf{p})(t)=\mathbf{p}(t+1)$. Find the matrix of L relative to the standard basis $\left\{1, t, t^{2}, t^{3}\right\}$
2. a) Find the eigenvalues of the following matrix. You do NOT have to find the eigenvectors.

$$
\left(\begin{array}{llllll}
3 & 2 & 1 & 1 & 2 & 3 \\
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 1 & 7 & 8 & 9 \\
0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 3 & 3 & 4 \\
0 & 0 & 0 & 5 & 4 & 3
\end{array}\right)
$$

b) Find the eigenvalues AND eigenvectors of the matrix $\left(\begin{array}{ll}1 & 4 \\ 1 & 0\end{array}\right)$. Also find the eigenvalues AND eigenvectors of the matrix $\left(\begin{array}{cc}1 & -4 \\ 1 & 0\end{array}\right)$.
3. A 3×3 matrix A has eigenvalues 2,1 and -1 and corresponding eigenvectors $\mathbf{b}_{1}=(1,2,3)^{T}$, $\mathbf{b}_{2}=(1,1,-1)^{T}$ and $\mathbf{b}_{3}=(-5,4,-1)^{T}$.
a) Decompose $(36,1,34)^{T}$ as a linear combination of $\mathbf{b}_{1}, \mathbf{b}_{2}$ and \mathbf{b}_{3}.
b) If $d \mathbf{x} / d t=A \mathbf{x}$ and $\mathbf{x}(0)=(36,1,34)^{T}$, what is $\mathbf{x}(t)$? [You do NOT need to compute A to do this.]
c) Is A Hermitian? Why or why not? Is A unitary?
4. Let A be a 3×3 matrix with eigenvalues $-9,0$ and 4 , and with eigenvectors $\mathbf{b}_{1}=(1,1,1)^{T}, \mathbf{b}_{2}=(1,2,3)^{T}$, and $\mathbf{b}_{3}=(0,0,1)^{T}$.
a) Decompose $\mathbf{w}=(4,5,5)^{T}$ and $\mathbf{v}=(2,1,4)$ as linear combinations of \mathbf{b}_{1}, \mathbf{b}_{2}, and \mathbf{b}_{3}.
b) Solve the system of differential equations $d^{2} \mathbf{x} / d t^{2}=A \mathbf{x}$ with initial conditions $\mathbf{x}(0)=\mathbf{w}$ and $\left.\frac{d \mathbf{x}}{d t}\right|_{t=0}=\mathbf{v}$.
c) Is A Hermitian? Why or why not? Is A unitary?
5. Linearization. Consider the nonlinear difference equations

$$
\begin{aligned}
& x_{1}(n+1)=\frac{x_{1}(n)^{2}}{2}+\frac{x_{2}(n)^{2}}{2}-\frac{1}{8} \\
& x_{2}(n+1)=x_{1}(n) x_{2}(n)+\frac{1}{2}
\end{aligned}
$$

near the fixed point $\mathbf{a}=(1 / 2,1)^{T}$.
a) Write down a LINEAR system of difference equations that (approximately) describes the evolution of $\mathbf{y}=\mathbf{x}-\mathbf{a}$.
b) How many stable modes are there? How many unstable? How many neutral?
c) Write down the general solution to the linear difference equations you found in (a).
6. Gram-Schmidt. Convert the following collections of vectors to orthogonal collections using the Gram-Schmidt process. In each case, we are using the usual inner product.
a) In \mathbb{R}^{4}, $\mathbf{x}_{1}=(1,0,1,2)^{T}$, $\mathbf{x}_{2}=(2,1,2,1)^{T}$, $\mathbf{x}_{3}=(6,3,4,1)^{T}$.
b) In \mathbb{C}^{3}, $\mathbf{x}_{1}=(1+i, 1-i, 2 i)^{T}$, $\mathbf{x}_{2}=(3+3 i, 3-i, 1+3 i)^{T}$.
7. Least squares.
a) Find a least-squares solution to the linear equations

$$
\left(\begin{array}{ccc}
1 & -2 & -1 \\
1 & -1 & 2 \\
1 & 0 & 0 \\
1 & 1 & -2 \\
1 & 2 & 1
\end{array}\right) \mathbf{x}=\left(\begin{array}{l}
3 \\
1 \\
2 \\
7 \\
5
\end{array}\right)
$$

b) Find the equation of the best line through the points $(0,1),(1,3),(2,4)$, $(3,5)$, and $(4,4)$.
8. Working on the interval $x \in[0,1]$, let $g_{0}(x)=\left\{\begin{array}{ll}x & \text { if } x<1 / 2 ; \\ 1-x & \text { if } x \geq 1 / 2\end{array}\right.$. In the book, we saw that g_{0} can be expanded in a (sine) Fourier series: $g_{0}(x)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x)$, where $c_{n}=4 \sin (n \pi / 2) / n^{2} \pi^{2}$.

Compute the solution to the wave equation: $\partial^{2} f / \partial t^{2}=\partial^{2} f / \partial x^{2}$ on the interval $[0,1]$ with Dirichlet boundary conditions and with initial conditions $f(x, 0)=0, \frac{\partial f}{\partial t}(x, 0)=g_{0}(x)$. You may leave your answer as a Fourier series, but you should compute all the coefficients.
Extra credit: For fixed nonzero t, how smooth is $f(x, t)$ as a function of x ? How many derivatives can you take? At what level do you get jump discontinuities. [I'm looking for an answer like "the first 15 derivatives of f are continuous, but the 16th derivative has jumps". (But no, that's not the correct answer)]
9. True of False? Each question is worth 2 points. You do NOT need to justify your answers, and partial credit will NOT be given.
a) If a matrix A is Hermitian, then e^{A} is diagonalizable.
b) If A is Hermitian, then e^{A} is unitary.
c) The eigenvalues of a real orthogonal matrix must be real.
d) If $f(x)$ is a periodic function with Fourier coefficients $\hat{f}_{n}=e^{-n^{2}}$, then $f(x)$ is infinitely differentiable.
e) If the columns of a matrix A are orthogonal and nonzero, then the only solution to $A \mathbf{x}=0$ is $\mathbf{x}=0$.
f) If \mathcal{B}, \mathcal{D} and \mathcal{E} are bases for a vector space, then $P_{\mathcal{B D}} P_{\mathcal{D E}} P_{\mathcal{E} \mathcal{B}}=I$.
g) If $L: V \rightarrow W$ is a linear transformation, then the kernel of L is a subspace of W.
h) If A is a block-triangular matrix, and if each block is diagonalizable, then A is diagonalizable.
i) The system $\mathbf{x}(n+1)=A \mathbf{x}(n)$ is stable if all the eigenvalues of A have negative real part.
j) If the determinant of a square matrix is zero, then zero is an eigenvalue.

