M346 First Midterm Exam Solutions, September 21, 2000
The exam is closed book, but you may have a single hand-written 8.5×11 crib sheet. There are 4 problems, each worth 25 points. I hope to have the exam returned to you next Thursday.

Good luck!

1. Let V be the subspace of \mathbb{R}_{3} consisting of polynomials \mathbf{p} with $\mathbf{p}(0)=0$. Let $\mathbf{b}_{1}=-t+t^{2}, \mathbf{b}_{2}=t+t^{2}+t^{3}, \mathbf{b}_{3}=-7 t-5 t^{2}+2 t^{3}$. Is the set $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ linearly independent? Does it span V ? Is it a basis for V ?

Solution: Note that V is a 3 -dimensional space with basis $\left\{t, t^{2}, t^{3}\right\}$. Relative to this basis, our three vectors have coordinates $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, and $\left(\begin{array}{c}-7 \\ -5 \\ 2\end{array}\right)$. Since the 3×3 matrix $\left(\begin{array}{ccc}-1 & 1 & -7 \\ 1 & 1 & -5 \\ 0 & 1 & 2\end{array}\right)$ is invertible (just row reduce it, or take its determinant), the columns form a basis for \mathbb{R}^{3}, hence the original vectors form a basis for V (and are linearly independent and span, or course).
2. In $\mathbb{R}_{2}[t]$, let $\mathbf{b}_{1}(t)=1+t+t^{2}, \mathbf{b}_{2}(t)=2+3 t+t^{2}, \mathbf{b}_{3}(t)=1+2 t+t^{2}$, and $\mathbf{v}(t)=5-2 t+3 t^{2}$. Let $\mathcal{E}=\left\{1, t, t^{2}\right\}$ be the standard basis. Find $P_{\mathcal{E B}}, P_{\mathcal{B E}}$, and $[\mathbf{v}]_{\mathcal{B}}$.

Solution:

$$
\begin{gathered}
P_{\mathcal{E B}}=\left(\begin{array}{ll}
{\left[\begin{array}{ll}
\left.b_{1}\right]_{\mathcal{E}} & {\left[b_{2}\right]_{\mathcal{E}}}
\end{array} \quad\left[b_{3}\right]_{\mathcal{E}}\right.}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & 3 & 2 \\
1 & 1 & 1
\end{array}\right) \\
P_{\mathcal{B E}}=P_{\mathcal{E B}}^{-1}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & -1 \\
-2 & 1 & 1
\end{array}\right) \\
{[\mathbf{v}]_{\mathcal{E}}=\left(\begin{array}{c}
5 \\
-2 \\
3
\end{array}\right) ; \quad[\mathbf{v}]_{\mathcal{B}}=P_{\mathcal{B E}}[\mathbf{v}]_{\mathcal{E}}=\left(\begin{array}{c}
10 \\
2 \\
-9
\end{array}\right) .}
\end{gathered}
$$

You should double-check that \mathbf{v} really does equal $10 \mathbf{b}_{1}+2 \mathbf{b}_{2}-9 \mathbf{b}_{3}$.
3. On $\mathbb{R}_{3}[t]$, let L be the linear operator that shifts a function over to the left by one. That is, $(L \mathbf{p})(t)=\mathbf{p}(t+1)$. Find the matrix of L relative to the standard basis $\left\{1, t, t^{2}, t^{3}\right\}$.

Solution: Note that $L\left(\mathbf{b}_{1}\right)=1, L\left(\mathbf{b}_{2}\right)=1+t, L\left(\mathbf{b}_{3}\right)=(1+t)^{2}=1+2 t+1$, $L\left(\mathbf{b}_{4}\right)=(1+t)^{3}=1+3 t+3 t^{2}+t^{3}$. Take the coordinates of these to get the columns of

$$
[L]_{\mathcal{B}}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

4. In $\mathbb{R}_{2}[t]$, let $\mathbf{b}_{1}(t)=1+t+t^{2}, \mathbf{b}_{2}(t)=2+3 t+t^{2}, \mathbf{b}_{3}(t)=1+2 t+t^{2}$, as in problem 2. Let $L=d / d t$ be the derivative operator. Find the matrix of L relative to the basis \mathcal{B}. [You may find your answers to problem 2 to be useful.]

Solution: Let \mathcal{E} be the standard basis, and compute $[L]_{\mathcal{E}}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right)$. Then $[L]_{\mathcal{B}}=P_{\mathcal{B E}}[L]_{\mathcal{E}} P_{\mathcal{E B}}=$

$$
\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & -1 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & 3 & 2 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 3 & 2 \\
0 & -4 & -2
\end{array}\right) .
$$

