1. Find all the eigenvalues of the following matrices. You do NOT need to find the corresponding eigenvectors. [Note: the answers are fairly simple, and can be obtained without a lot of calculation, using the various "tricks of the trade".]
а) $\left(\begin{array}{cccc}3 & 1 & 5 & 17 \\ 1 & 3 & 4 & -10 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 2\end{array}\right)$
b) $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 0 & 2 \\ 1 & 2 & 3\end{array}\right)$.
2. The eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{ccc}0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0\end{array}\right)$ are $\lambda_{1}=-2, \lambda_{2}=1$ and $\lambda_{3}=1$, and corresponding eigenvectors
$\mathbf{b}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \mathbf{b}_{2}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$ and $\mathbf{b}_{3}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$. (That is, the eigenvalue 1 has
multiplicity two, and a basis for the eigenspace E_{1} is $\left\{\mathbf{b}_{2}, \mathbf{b}_{3}\right\}$.)
a) Solve the difference equation $\mathbf{x}(n+1)=A \mathbf{x}(n)$ with initial condition $\mathbf{x}(0)=\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)$ (which equals $\mathbf{b}_{1}+\mathbf{b}_{2}+\mathbf{b}_{3}$, by the way). That is, find $\mathbf{x}(n)$ for every n.
b) With the situation of part (a), identify the stable, unstable, and neutrally stable modes. What are the limiting ratios $x_{1}(n) / x_{2}(n)$ and $x_{1}(n) / x_{3}(n)$ when n is large?
c) Now solve the differential equation $d \mathbf{x} / d t=A \mathbf{x}$ with initial condition $\mathbf{x}(0)=\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)$. That is, find $\mathbf{x}(t)$ for all t.
d) With the situation of part (c), identify the stable, unstable, and neutrally stable modes. What are the limiting ratios $x_{1}(t) / x_{2}(t)$ and $x_{1}(t) / x_{3}(t)$ when t is large?
3. Consider the matrix $A=\left(\begin{array}{ll}4 & 5 \\ 5 & 4\end{array}\right)$.
a) Find the eigenvalues and eigenvectors of A.
b) Write down the general solution to the second-order differential equation $d^{2} \mathbf{x} / d t^{2}=A \mathbf{x}$, with A as above.
c) Find the solution to this equation when $\mathbf{x}(0)=\binom{4}{-2}$ and $\dot{\mathbf{x}}(0)=\binom{11}{1}$.
4. A 2×2 matrix M has eigenvalues 1 and 8 , and corresponding eigenvectors $\mathbf{b}_{1}=\binom{2}{3}, \mathbf{b}_{2}=\binom{3}{5}$. Consider the basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ for \mathbb{R}^{2}.
a) Find $[M]_{\mathcal{B}}, P_{\mathcal{E} \mathcal{B}}$ and $P_{\mathcal{B E}}$.
b) Find M (expressed in the ordinary basis).
c) A matrix A has the property that $A^{3}=M$. Find A. [Hint: what are the eigenvalues and eigenvectors of A ?]
5. True of False? Each question is worth 4 points. You do NOT need to justify your answers, and partial credit will NOT be given.
a) The geometric multiplicity of an eigenvalue λ is the dimension of the eigenspace E_{λ}.
b) If a matrix is diagonalizable, then its eigenvalues are all different.
c) Let A by an arbitrary $n \times n$ matrix. The sum of the algebraic multiplicities of the eigenvalues of A must equal n.
d) The eigenvalues of a (square) matrix with real entries are always real.
e) If $B=P A P^{-1}$, then A and B have the same eigenvalues.
