M346 Third Midterm Exam, April 24, 2009

1. Is it fixed yet? Consider the system of nonlinear differential equations:

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =x_{1}\left(3-2 x_{1}-x_{2}\right) \\
\frac{d x_{2}}{d t} & =x_{2}\left(5-2 x_{1}-3 x_{2}\right)
\end{aligned}
$$

a) Find all the fixed points.
$(0,0),\left(0, \frac{5}{3}\right),\left(\frac{3}{2}, 0\right)$ and $(1,1)$
b) For each fixed point, indicate how many stable modes, and how many unstable modes, there are.

Our derivative matrix is $\left(\begin{array}{cc}3-4 x_{1}-x_{2} & -x_{1} \\ -3 x_{2} & 5-5 x_{2}-3 x_{1}\end{array}\right)$
At $(0,0)$ this is $\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right)$ which has two positive eigenvalues, so there are two unstable modes and no stable modes. This is a source.

At $\left(0, \frac{5}{3}\right)$ this is $\left(\begin{array}{cc}\frac{4}{3} & 0 \\ -5 & -5\end{array}\right)$ which has one positive eigenvalue, so there is one unstable mode and one stable mode. This is a saddle.

At $\left(\frac{3}{2}, 0\right)$ this is $\left(\begin{array}{cc}-3 & -\frac{3}{2} \\ 0 & \frac{1}{2}\end{array}\right)$ which has one positive eigenvalue, so there is one unstable mode and one stable mode. This is a saddle.

At $(1,1)$ this is $\left(\begin{array}{ll}-2 & -1 \\ -3 & -4\end{array}\right)$ which has two negative eigenvalues (-5 and -1), so there are two stable modes and no unstable modes. This is a sink.
2. Gram crackers. In \mathbb{R}^{3}, with the standard inner product, consider the vectors $\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right), \mathbf{x}_{2}=\left(\begin{array}{c}4 \\ -1 \\ 4\end{array}\right), \mathbf{x}_{3}=\left(\begin{array}{c}16 \\ 9 \\ -2\end{array}\right)$ that form a basis for \mathbb{R}^{3}.
a) Use the Gram-Schmidt process to convert this basis to an orthogonal basis $\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right\}$. (Note: the vectors \mathbf{y}_{i} do not have to be orthonormal, just orthogonal.)
$\mathbf{y}_{1}=\mathbf{x}_{1}=(1,2,3)^{T} \cdot \mathbf{y}_{2}=\mathbf{x}_{2}-\frac{14}{14} \mathbf{y}_{1}=(4,-1,4)^{T} \cdot \mathbf{y}_{3}=\mathbf{x}_{3}-\frac{28}{14} \mathbf{y}_{1}-\frac{19}{19} \mathbf{y}_{2}=$ $(11,8,-9)^{T}$.
b) The vector $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ can be expressed as $c_{1} \mathbf{y}_{1}+c_{2} \mathbf{y}_{2}+c_{3} \mathbf{y}_{3}$. Find c_{1}, c_{2} and c_{3}.

Using $c_{i}=\left\langle\mathbf{y}_{i} \mid(1,0,0)^{T}\right\rangle /\left\langle\mathbf{y}_{i} \mid \mathbf{y}_{i}\right\rangle$ we get $c_{1}=1 / 14, c_{2}=3 / 19$, and $c_{3}=$ 11/284.
3. When least is best. Find all least-squares solutions to the system of equations

$$
\begin{array}{r}
x_{1}+2 x_{2}=1 \\
2 x_{1}+4 x_{2}=1 \\
3 x_{1}+6 x_{2}=1 \\
4 x_{1}+8 x_{2}=1
\end{array}
$$

Since $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 4 \\ 3 & 6 \\ 4 & 8\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$, we compute $A^{T} A=\left(\begin{array}{cc}30 & 60 \\ 60 & 120\end{array}\right)$
and $A^{T} \mathbf{b}=\binom{10}{20}$. Note that $A^{T} A$ is singular. Solving $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ gives infinitely many solutions: $\mathbf{x}=\binom{1 / 3}{0}+t\binom{-2}{1}$, where t is arbitrary.
4. Working 24/7. Consider the Hermitian matrix $H=\left(\begin{array}{cc}24 & 7 \\ 7 & -24\end{array}\right)$.
a) Find the eigenvalues λ_{1} and λ_{2} and corresponding eigenvectors \mathbf{b}_{1} and \mathbf{b}_{2} of H.

The trace is zero and the determinant is $-(25)^{2}$, so the eigenvalues are 25 and -25 , with eigenvectors $(7,1)^{T}$ and $(1,-7)^{T}$.
b) Decompose $\mathbf{x}_{0}=\binom{13}{9}$ as a linear combination of \mathbf{b}_{1} and \mathbf{b}_{2}.

The eigenvectors are orthogonal, so the coefficients are $\left\langle\mathbf{b}_{1} \mid \mathbf{x}_{0}\right\rangle /\left\langle\mathbf{b}_{1} \mid \mathbf{b}_{1}\right\rangle=$ $\frac{100}{50}=2$ and $\left\langle\mathbf{b}_{2} \mid \mathbf{x}_{0}\right\rangle /\left\langle\mathbf{b}_{2} \mid \mathbf{b}_{2}\right\rangle=\frac{-50}{50}=-1$, so $\mathbf{x}_{0}=2 \mathbf{b}_{1}-\mathbf{b}_{2}$.
c) If $d \mathbf{x} / d t=H \mathbf{x}$ and $\mathbf{x}(0)=\mathbf{x}_{0}$ as in (b), what is $\mathbf{x}(t)$?

$$
\mathbf{x}(t)=2 e^{25 t} \mathbf{b}_{1}-e^{-25 t} \mathbf{b}_{2}
$$

